
MLEgg: Applying Equality Saturation to LLVM
COMP 400 Research Project, advised by Christophe Dubach

KATIE LIN,McGill University, Canada
Compiler optimization is an important job; improve-
ments in compiler efficiency are themselves the most
efficient way to optimize code, as they will impact all
code generated by it. However, this is not an easy task;
generating optimized code is significantly more diffi-
cult than just translating one-to-one. Specialized inter-
mediate representations, like allowed byMLIR, can help
by allowing different paradigms that programmers use
to be preserved and represented. Effectively using these
IRs to optimize code, though, is oftentimes a very man-
ual process.
Traditional optimization techniques often rely on hand-

written code and deal with only one statement at a time.
Dialects ofMLIR can helpwith capturing different paradigms;
however, oftentimes these paradigms are not transpar-
ently represented. Equality saturation, a technique that
represents multiple versions of a program simultane-
ously, solves this issue. By programatically generating
and representing equivalent statements, it efficiently
optimizes generated code.
This paper describes a proof-of-concept implementa-

tion of an MLIR pass that applies equality saturation to
a simple program. It is able to parse and interpret in-
structions, calling an efficient equality saturation run-
ner to generate alternate, more optimized, representa-
tions of the program structure. This allows optimiza-
tions to be applied automatically and without ordering
constraints.

1 INTRODUCTION
Compilers, with a job of translating high-levelwrit-
ten code into low-level machine-executable code,
have a difficult task. There are lots of languages,
and lots of machines, and writing direct adapters
would be obscenely time consuming. The LLVM

Author’s address: Katie Lin, McGill University, School of
Computer Science, Montréal, QC, Canada, katie.lin1@mai
l.mcgill.ca.

project and its common intermediate representa-
tion (or IR) simplifies this issue by creating a com-
mon language to translate from and to.This allows
for new hardware to be easily adapted and opti-
mized for, and for those benefits to carry across
multiple languages.
MLIR is an generalization of the LLVM IR. It ex-

tends the instructions in the LLVM IR, allowing for
more complex paradigms to be reprsented. For ex-
ample, loops can be represented directly, instead
of as goto/break combos. In addition, with this
extra information, specialized instructions can be
genrated for specialized hardware.
Compiler optimization is often a very manual

process. Optimizations have to bemanually observed
by field experts, and contexts wherein they can
apply are limited. Verification that they work in
all required contexts can range from tedious and
error-prone to straight up impossible.
One of the largest challenges when optimizing

code is ordering. Because code is rewritten in-place,
the prior state of the code is often lost during an
optimization.This leads to optimizations that need
to be very carefully ordered, as otherwise local op-
timizations that seem like the best decision can
lead to larger optimizations being unable to be ap-
plied.
Equality saturation allows for multiple versions

of a program to exist simultaneously. The most ef-
ficient version of it, determined heuristically, can
then be chosen and extracted. Because multiple
optimizations of a program can be applied effec-
tively at once, the most optimal ordering of opti-
mizations can be found and applied automatically[1].
This paper shows how this technique can be ap-

plied to MLIR. A subset of the Linalg dialect of
MLIR, focused on representing linear algebra, is



2 • Katie Lin

described rule-wise in an equality saturation frame-
work. Programs are assessed and filtered by basic
block, and optimizations applied.
This proof-of-concept successfully demonstrates

thatMLIR instructions can be interpreted and passed
to an equality saturation framework. Round-tripping
a program in this fashion additionally allows opti-
mizations to be performed on a variable number
of statements at once.

2 BACKGROUND AND MOTIVATION
2.1 MLIR and LLVM
LLVM defines an IR that it knows how to translate
to machine code. MLIR takes advantage of LLVM’s
ability to convert its IR to machine code by build-
ing dialects on top of it that can compile down
to LLVM IR. Multiple of these dialects can coexist
within a single MLIR program, allowing for rewrit-
ings and lowerings to affect only parts of a program
at once. After MLIR code is generated by a com-
piler, multiple passes are run on it to lower it to
LLVM IR.
Dialects often represent higher-level concepts than

pure machine code can express. For instance, di-
alects such as loop and func represent loops and
function calls. Other dialects can represent more
abstract concepts, like tensors, which aremultiple-
dimension collections.
Multiple dialects can represent the same thing,

at different levels of abstraction. For example, the
aforementioned tensor can also be represented,
more concretely, by instructions in the affine di-
alect. Evenmore concretely, themultiple-dimension
collection can be backed by an actualmemory-mapped
array.

2.2 Equality Saturation and egg
Equivalence graphs (or e-graphs) are themain driv-
ing force behind equality saturation. E-graphs are
a cheap way of representing equivalence relations
across many expressions [3]. By storing classes of
operations, and building relations between them,
equivalences can be stored much more efficiently

than relations on individual expressions. The re-
cursive nature of e-graphs also allows a potentially
infinite amount of equivalences to be stored in a fi-
nite manner.
However, especially at a larger scale, equality sat-

uration can be expensive. Evenwith the space-saving
nature of e-graphs, saturating one is still an opera-
tion that grows exponentially. Oftentimes in prac-
tice on larger datasets, equality saturation is only
run for a certain (single-digit) number of steps, as
doing more would be cost-prohibitive.
The egg library is an implementation of equal-

ity saturation in Rust. Given a defined language
and a defined set of rules that operate on the lan-
guage, it is able to take an arbitrary expression and
cost function and optimize it. One of egg’s largest
improvements on traditional e-graphs is changing
the invariant to only hold after a rebuilding opera-
tion. Relaxing the invariant allows insertion oper-
ations to be more efficient.

2.3 Motivation
Equality saturation was built to drive compiler op-
timization [3]. Much research has been done into
applying equality saturation techniques to mod-
ern programming languages, especially in the field
of idiom recognition [2]. However, these examples
have been focused on optimizing high-level lan-
guages, or languages with easily-defined seman-
tics.
Optimizing a lower-level representation, like LLVM

IR, would allow for these benefits to apply in a
language-agnosticmanner.This optimizationwould
be much harder, as idioms wouldn’t be nearly as
easily recognizable, and information is lost in the
lowering process. MLIR splits the difference by al-
lowing for specificity and retained informationwhile
still maintaining the interoperability benefits.

3 OVERVIEW
The project pairs MLIR and egg to apply equal-
ity saturation to an IR directly—in this case, the
Linalg dialect. It acts as an MLIR pass, adapting



MLEgg: Applying Equality Saturation to LLVM • 3

Input MLIR

Program out.gv
Language

egg parsing

S-expression
out2.gv

Graph

Output MLIR

Fig. 1. An overview of the structure of MLEgg.

the instructions found within to an egg expression
and using the tools that library provides to per-
form equality saturation. It then adapts in reverse,
bringing that result back to the MLIR pass and ap-
plying it.

4 IMPLEMENTATION
The program is effectively implemented as a se-
ries of translation layers between MLIR code and
the egg equality saturation library. This allows for
maximum extensibilitywhile not duplicating prior
work done on other libraries. Due to language dif-
ferences and to aid flexibility in development, the
project is implemented in two parts: a program
which runs theMLIR pass and a sub-programwhich
takes a simple graph and runs equality saturation
on it, outputting a new graph with references to

the original. Lastly, because expressions are most
easily represented as discrete acyclic graphs, the
Dot language is used as an interchange format to
pass between the two parts.

4.1 MLIR Pass
Like any other MLIR pass, MLEgg takes in a pro-
grammatic representation of the MLIR code as it
currently exists in the lowering process and must
return the same. Filtering for only operations that
the programhas rules for is simple, using theMLIR
API. In order to guarantee that branching and loop
instructions won’t affect the equality saturation
process, this filtering process is done per basic block.



4 • Katie Lin

With a filtered list of operations to consider, the
program generates a directed acyclic graph show-
ing parent-child relationships between every op-
eration and every value each operation takes as
input. This heredity graph is equivalent to the in-
put expression to the equality saturation runner,
but it’s trapped on the wrong side of the program-
subprogram wall.

4.2 Translating with Dot
In order to pass the graph to egg, the MLIR pass
writes it to a file and calls the equality saturation
subprocess, telling it to look for the file as input.
The subprogram then parses the input file and recre-
ates the graph. Using the information given by the
graph, the subprogram builds an egg RecExpr.
Instead of using inter-process communication, or

writing the entire program as one overarching unit,
the program is developed in two components in
two languages.This simplifies the development pro-
cess by removing a layer of complexity. Rust and
C++ are interoperable, but using standard Unix file
manipulation tools allows for transparency during
the interprocess portion.
Dot is a simple and functional file format for ex-

pressing graphs. Because of its heavy usage, it is
well-documented and can serve as an easy visual
debug tool.
The graph interpreter used to read the Dot file is

nontrivial, as it needs to account for the possibil-
ity that there is more than one root node. Because
the built graph data structure does not have ref-
erences to parent nodes, it creates a unique set of
all nodes that are children of other nodes and then
finds the difference between that and the entire set
of nodes. This creates the set of nodes that are not
the children of any other nodes; or, in other words,
the set of root nodes.

4.3 Using egg
Most of the program is aimed around wrapping
MLIR statements in such a way that they can be

interpreted by egg. The most crucial step is build-
ing the input expression. Because egg needs a set
of known operators to operate on, the input ex-
pression must be defined in terms of a Language –
a user-defined enum that contains a set of opera-
tions that rules can refer to. Thus, in order to prop-
erly convert the input DAG to an input expression,
the DAG must be parsed and re-expressed within
the Language.
While parsing, in order to simplify the reconcili-

ation process later on, the original node ID is pre-
served within the data string.
Once the expression is built, the runner can be

called with the expression and predefined rules as
inputs.The outputted fully-saturated graph can have
a cost function applied – in this case, one minimiz-
ing node count – to extract the most efficient ex-
pression from it. This expression serves as the out-
put which should be represented by the program.

4.4 Translating back with Dot
Due to limitations in the egg library, this expres-
sion is only representable as a stringified s-expression.
This s-expression must then be manually parsed,
generating another DAG which can then be out-
put to the main program.
Because of the ubiquity of the Dot format, the

egg library actually includes a Dot printer for an
arbitrary expression. However, the printer is aimed
at pretty-printing an output for explanatory rea-
sons, and thus has many extraneous nodes. Since
this project only uses a subset of the Dot language
for simplicity, it is easier to write a bespoke graph
traversal and printing method.

4.5 Transforming MLIR
With the transformed graph read back into theMLIR
pass, the actual instructions need to be modified to
match the new state. The new graph contains in-
formation about what operations should exist and
which values they should operate on.These values
either exist within the current set of instructions



MLEgg: Applying Equality Saturation to LLVM • 5

already, or are the result of another new operation
generated by the equality saturation process.
The new instructions are generated at the end of

the original basic block. This maintains the guar-
antee that the original nodes that the new instruc-
tions reference will be instantiated when the new
instructions need them.
Finally, as all the original instructions have been

replaced, they can be deleted.

5 EVALUATION
A qualitative evaluation ofMLEgg follows, demon-
strated using the following basic MLIR program.

module {

%lhs = tensor.empty() : tensor<3x2xf32>

%rhs = tensor.empty() : tensor<2x4xf32>

%init = tensor.empty() : tensor<3x4xf32>

%matmul = linalg.matmul ins(%lhs, %rhs:

tensor<3x2xf32>, tensor<2x4xf32>)

outs(%init: tensor<3x4xf32>) ->

tensor<3x4xf32>

%new = tensor.empty() : tensor<4x3xf32>

%init2 = tensor.empty() : tensor<3x3xf32>

%next = linalg.matmul ins(%matmul, %new:

tensor<3x4xf32>, tensor<4x3xf32>)

outs(%init2: tensor<3x3xf32>) ->

tensor<3x3xf32>

}

Across each program, the program guarantees
that it can run, then recurses and processes each
basic block. Within the example program, there is
only one basic block – it considers the entire pro-
gram at once.
The program then filters out all the instructions

in the basic block that it doesn’t have rules for.
With the remaining instructions, every node is given
an ID, and a graph is generated showing heredity
relationships between instructions and arguments.
For instance, in the example program, only the two
linalg.matmul instructions are considered. The

heredity graph shows that the instruction labeled
%next depends on the instruction labeled %matmul,
as follows.

%next
linalg.matmul

%matmul
linalg.matmul

%1 %2

%5

Fig. 2. Heredity graph

This graph is then written to a file and passed
to the equality saturation sub-program. The sub-
program reads the graph and converts it to the s-
expression in the requisite language that the egg
library expects as input. In this example, with the
language represented using an identical string as
MLIR, the s-expression looks as follows.

(linalg.matmul (linalg.matmul 1 2) 5)

Fig. 3. Input s-expression

The program then saturates the graph using the
provided rules. From the fully saturated graph, a
new expression is extracted, using a cost function
optimizing for node count. In this example, the ex-
tracted s-expression is slightly different from the
input expression.

(linalg.matmul 1 (linalg.matmul 2 5))

Fig. 4. Extracted s-expression

This s-expression is then parsed, written out, and
returned to the MLIR pass.TheMLIR pass uses the
new heredity graph to create new instructions for
the program, based on the child instructions refer-
encing the previous graph. The new instructions
are created at the end of the basic block, so as to



6 • Katie Lin

not interfere with preexisting instructions. Finally,
the old instructions are deleted, leaving just the
new instructions.

module {

%1 = tensor.empty() : tensor<3x2xf32>

%2 = tensor.empty() : tensor<2x4xf32>

%init = tensor.empty() : tensor<2x3xf32>

%4 = tensor.empty() : tensor<4x3xf32>

%init2 = tensor.empty() : tensor<3x3xf32>

%5 = linalg.matmul ins(%2, %4: tensor<2

x4xf32>, tensor<4x3xf32>) outs(%init:

tensor<2x3xf32>) -> tensor<2x3xf32>

%3 = linalg.matmul ins(%1, %5: tensor<3

x2xf32>, tensor<2x3xf32>) outs(%init2

: tensor<3x3xf32>) -> tensor<3x3xf32>

}

Note that in the worked example above, the two
instructions were indeed successfully swapped.

6 CONCLUSION
This paper has shown a working example of a pro-
gram applying equality saturation to an MLIR di-
alect. The proof of concept can be extended, given
a larger set of rules, to other operations and other
dialects.

REFERENCES
[1] Ross Tate, Michael Stepp, Zachary Tatlock, and Sorin

Lerner. 2009. Equality saturation: a new approach to
optimization. In Proceedings of the 36th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages (POPL ’09). Association for Comput-
ingMachinery, Savannah, GA, USA, 264–276. isbn: 9781605583792.
doi: 10.1145/1480881.1480915.

[2] JonathanVanDer Cruysse andChristopheDubach. 2024.
Latent idiom recognition for a minimalist functional ar-
ray language using equality saturation. In 2024 IEEE/ACM
International Symposium on Code Generation and Opti-
mization (CGO), 270–282. doi: 10.1109/CGO57630.202
4.10444879.

[3] Max Willsey, Chandrakana Nandi, Yisu Remy Wang,
Oliver Flatt, Zachary Tatlock, and Pavel Panchekha. 2021.
Egg: fast and extensible equality saturation. Proc. ACM
Program. Lang., 5, POPL, Article 23, (Jan. 2021), 29 pages.
doi: 10.1145/3434304.

https://doi.org/10.1145/1480881.1480915
https://doi.org/10.1109/CGO57630.2024.10444879
https://doi.org/10.1109/CGO57630.2024.10444879
https://doi.org/10.1145/3434304

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 MLIR and LLVM
	2.2 Equality Saturation and egg
	2.3 Motivation

	3 Overview
	4 Implementation
	4.1 MLIR Pass
	4.2 Translating with Dot
	4.3 Using egg
	4.4 Translating back with Dot
	4.5 Transforming MLIR

	5 Evaluation
	6 Conclusion

